42,128 research outputs found

    Smoothed Particle Magnetohydrodynamics (some shocking results...)

    Full text link
    There have been some issues in the past in attempts to simulate magnetic fields using the Smoothed Particle Hydrodynamics (SPH) method. SPH is well suited to star formation problems because of its Lagrangian nature. We present new, stable and conservative methods for magnetohydrodynamics (MHD) in SPH and present numerical tests on both waves and shocks in one dimension to show that it gives robust and accurate results.Comment: Kluwer latex, 6 pages, 3 figures; Proceedings of the International Workshop "Magnetic Fields and Star Formation: Theory vs Observations", Madrid, 21-25 April 2003. Revised version accepted to proceedings (exact solutions added, other minor changes

    Complementary approaches to the ab initio calculation of melting properties

    Full text link
    Several research groups have recently reported {\em ab initio} calculations of the melting properties of metals based on density functional theory, but there have been unexpectedly large disagreements between results obtained by different approaches. We analyze the relations between the two main approaches, based on calculation of the free energies of solid and liquid and on direct simulation of the two coexisting phases. Although both approaches rely on the use of classical reference systems consisting of parameterized empirical interaction models, we point out that in the free energy approach the final results are independent of the reference system, whereas in the current form of the coexistence approach they depend on it. We present a scheme for correcting the predictions of the coexistence approach for differences between the reference and {\em ab initio} systems. To illustrate the practical operation of the scheme, we present calculations of the high-pressure melting properties of iron using the corrected coexistence approach, which agree closely with earlier results from the free energy approach. A quantitative assessment is also given of finite-size errors, which we show can be reduced to a negligible size.Comment: 14 pages, two figure

    Ab-initio chemical potentials of solid and liquid solutions and the chemistry of the Earth's core

    Full text link
    A general set of methods is presented for calculating chemical potentials in solid and liquid mixtures using {\em ab initio} techniques based on density functional theory (DFT). The methods are designed to give an {\em ab initio} approach to treating chemical equilibrium between coexisting solid and liquid solutions, and particularly the partitioning ratio of solutes between such solutions. For the liquid phase, the methods are based on the general technique of thermodynamic integration, applied to calculate the change of free energy associated with the continuous interconversion of solvent and solute atoms, the required thermal averages being computed by DFT molecular dynamics simulation. For the solid phase, free energies and hence chemical potentials are obtained using DFT calculation of vibrational frequencies of systems containing substitutional solute atoms, with anharmonic contributions calculated, where needed, by thermodynamic integration. The practical use of the methods is illustrated by applying them to study chemical equilibrium between the outer liquid and inner solid parts of the Earth's core, modelled as solutions of S, Si and O in Fe. The calculations place strong constraints on the chemical composition of the core, and allow an estimate of the temperature at the inner-core/outer-core boundary.Comment: 19 pages, two figure

    A preliminary study of composite orbiter/ lander missions to satellites of the outer planets

    Get PDF
    Objectives and payload requirements for composite orbiter/lander missions to satellites of outer planet

    Preliminary feasibility study of soft-lander missions to the Galilean satellites of Jupiter

    Get PDF
    Feasibility study of soft lander missions to Galilean satellites of Jupite

    Sculplexity: Sculptures of Complexity using 3D printing

    Full text link
    We show how to convert models of complex systems such as 2D cellular automata into a 3D printed object. Our method takes into account the limitations inherent to 3D printing processes and materials. Our approach automates the greater part of this task, bypassing the use of CAD software and the need for manual design. As a proof of concept, a physical object representing a modified forest fire model was successfully printed. Automated conversion methods similar to the ones developed here can be used to create objects for research, for demonstration and teaching, for outreach, or simply for aesthetic pleasure. As our outputs can be touched, they may be particularly useful for those with visual disabilities.Comment: Free access to article on European Physics Letter

    Phase Lags in the Optical-Infrared Light Curves of AGB Stars

    Full text link
    To search for phase lags in the optical-infrared light curves of asymptotic giant branch stars, we have compared infrared data from the COBE DIRBE satellite with optical light curves from the AAVSO and other sources. We found 17 examples of phase lags in the time of maximum in the infrared vs. that in the optical, and 4 stars with no observed lags. There is a clear difference between the Mira variables and the semi-regulars in the sample, with the maximum in the optical preceding that in the near-infrared in the Miras, while in most of the semi-regulars no lags are observed. Comparison to published theoretical models indicates that the phase lags in the Miras are due to strong titanium oxide absorption in the visual at stellar maximum, and suggests that Miras pulsate in the fundamental mode, while at least some semi-regulars are first overtone pulsators. There is a clear optical-near-infrared phase lag in the carbon-rich Mira V CrB; this is likely due to C2 and CN absorption variations in the optical.Comment: AJ, in pres
    • …
    corecore